
-1-

Summary of the IHFS Data Access Prototype Project

I. Overview of IHFS Data Access Prototype project

The mission statement of the Hydrology Laboratory (formerly the Hydrologic Research Lab) is to
“conduct studies, investigations and analyses leading to the application of new scientific and
computer technologies for hydrologic forecasting and related water resources problems.” In
support of that mission, the purpose of the Integrated Hydrologic Forecast System (IHFS) project
is to provide a more effective system of tools and techniques for use at River Forecast Centers
(RFCs), Weather Forecast Offices (WFOs) and supporting headquarters offices. Initial IHFS
efforts laid a foundation of components for evolving the future system. One key component is a
Logical Data Model (LDM) (http://hsp.nws.noaa.gov/oh/hrl/ihfs/logmodel/index.html), which
provides definitions and identifies relationships for all the data used by hydrologists. The second
key ingredient is a software architecture (
http://hsp.nws.noaa.gov/oh/hrl/ihfs/architecture_doc/ihfs.htm), which provides definitions for
and identifies interfaces between the software components which manipulate that data. Two
other available pieces for the foundation are a proposed Logical Process Model and a proposed
Software Development Process. With that foundation in place, the Hydrology Laboratory
undertook an experiment to validate the components of that foundation by using them to develop
a prototype application.

Within the overall goal of validating the foundation components, the project hoped to investigate
or demonstrate a number of concepts. The primary intent was to show that an application could
access data which currently resides in the legacy NWSRFS data system via a standards based,
object oriented Application Program Interface (API) in keeping with the IHFS software
architecture. Another important goal was to implement a portion of the previously developed
IHFS Logical Data Model to assess its utility as a description of the data domain. The prototype
would also be used to assess the feasibility of upgrading and evolving the NWSRFS via
gradually replacing applications and portions of the system versus a single “big bang” approach.

The project team selected the MAPX preprocessor application as the basis for the prototype
because while it accessed data from several different NWSRFS data stores, the application itself
was relatively straightforward and simple to implement. The MAPX preprocessor computes
mean areal precipitation values based upon gridded precipitation values derived from radar
observations. These values are then stored back into an NWSRFS data store in a time series
format.

II. Development Process

http://hsp.nws.noaa.gov/oh/hrl/ihfs/logmodel/index.html
http://hsp.nws.noaa.gov/oh/hrl/ihfs/architecture_doc/ihfs.htm

-2-

The proposed IHFS software development process was based heavily on an object-oriented
approach using a Computer Aided Software Engineering (CASE) tool. The concept of the process
was to create a design based around data objects from the LDM, use the CASE tool to generate
code from the design, and then use the CASE tool to maintain the design and software as they
evolved throughout integration and testing.

As the name suggests, CASE tools are intended to assist in the software engineering process.
While different CASE tools provide assistance in various forms, the central idea is to eliminate
the mechanical or tedious aspects of software design and development and allow the user to
concentrate on ideas rather than process. For example, after an object is defined, the tool
maintains that definition in a diagram and can automatically copy the object wherever the designer
wants it in the design. The tool also ensures that definitions and interfaces are consistent
throughout the entire design.

The LDM is defined using the “Unified Modeling Language” (UML). UML is recognized as “the
industry-standard language for specifying, visualizing, constructing, and documenting the artifacts
of software systems. It simplifies the complex process of software design, making a ‘blueprint’ for
construction” (http://www.rational.com/uml/index.jsp). A design in UML manifests itself as a set
of diagrams containing standard symbols that graphically depict the definitions and relationships
of the components of the design.

The IHFS project uses the CASE tool, ObjectTeam, to create and maintain the LDM, so it was a
logical choice for developing the prototype. (Note, this tool is currently distributed as “Telelogic
Tau” by Telelogic AB). In addition to supporting object oriented design and analysis,
ObjectTeam provides the capability to generate source code in a variety of languages from the
UML diagrams.

The prototype team used the code generation feature to produce the initial source code for almost
all of the software modules developed for the prototype. The source code generated by the tool
essentially consists of a framework into which a developer still must insert code to actually
implement most functions. The tool also provides a reverse engineering function which is
somewhat able to analyze source code and update the class information held in the tool. While
the function proved somewhat useful for adding and analyzing class libraries, it was not
particularly useful for maintaining successive iterations of software modules during development.
In fairness, this deficiency may have been due at least in part to a lack of investment of resources
to thoroughly understand, customize and maintain the tool for our particular application.

The use of the ObjectTeam code generation function led to another even greater difficulty. The
intent of the LDM was to be “language neutral”, in other words, the model should be usable
without regard to the language in which it was to be implemented. Unfortunately, the version of
the tool which we used required different UML constructs depending upon whether c++ or java
code was being generated. This deficiency may have been addressed in later versions of the tool,

http://www.rational.com/uml/index.jsp

-3-

but we don’t know because the prototype team was reluctant to change the tool during the project.
As a result, the prototype currently maintains two slightly different sets of diagrams - one of
which represents the c++ implementation and the other representing the java code.

During the prototype development effort, there were usually only two people actively involved in
design and programming at any time. For efficiency, we attempted to divide the responsibility for
detailed design and coding into sections with clearly defined interfaces. In view of the small team
size and the fact that the objects and interfaces could be maintained in common by ObjectTeam,
we expected that the amount of coordination and configuration management needed would be
minimized. However, the team still found it necessary to periodically discuss the intent and details
of the objects and interfaces during both the detailed design and the coding and integration phases
of the project. It was also imperative to mandate that all development used a common set of
object definitions.

III. The Prototype Design

As stated above, the first step in the development process is the design. In creating the design, the
prototype team had to consider several important design constraints:

The prototype application had to replace its counterpart without any impact upon the regular
process flow within NWSRFS. This constraint was complicated by the fact that most of the
NWSRFS is written in Fortran and relies heavily upon common blocks to pass information; and
the data stores have a custom format accessible through a large number of very specific routines
also written in Fortran.

Another important design constraint was that all the objects used in the prototype had to be
consistent with the IHFS Logical Data Model (LDM). Bonnin and Urban describe the logical
data model as being “concerned with the data itself rather than how it [the data] is stored. It
provides a complete and detailed description of the data, its attributes and interrelationships
without regard for physical implementation.” The design and implementation of the prototype led
to several iterations of modifications and improvements to the LDM. The development team also
found it necessary to compress layers of inheritance in order to reasonably efficiently implement
the relationships between some of the objects used within the prototype. However, where this
simplification was done, pains were taken to preserve the basic character of the relationships.

One design decision which evolved from the need for consistency with the LDM was that the
objects upon which the prototype was built would be of two types: pure data (data-only) objects
and process objects. While categorizing objects in this fashion seems contrary to most
conventional object-oriented design theory, it was consistent with the software architecture and
with the concept that the data layer would just be providing data through the data access API. In
the actual implementation, for the most part, the data objects only contained methods to access
(set and get) the data attributes they contained. The process objects primarily consisted of
methods to manipulate external data. The latter objects are much like the concept of interfaces in

-4-

java. Unfortunately, c++ doesn’t provide a close counterpart to this concept.

The design of the MAPX application was constrained to be consistent with the “Logical Process
Model.” The logical process model was not as mature and has not been subjected to the same
level of internal review as the LDM. However, for the most part the only impact of this constraint
was in the naming and relationships of the process objects.

The prototype development was to be implemented using commercially available or public
domain software wherever possible, with the actual software written by the team being “as little as
possible, but as much as necessary.”

Some of the design constraints seemed easy to address initially. Since the prototype application
was to be written in an object-oriented language, c++ was chosen as being the most widely
accepted object-oriented language at the time.

However, the design team spent a lot of time trying to find the best way to accommodate some of
the other constraints. One design constraint that was difficult to meet was that the application
should access data at the object level. In other words, the application should accept and return
data objects, rather than individual data elements or values. One of the most significant decision
points involved the identification of the standard data interface to be used for the Application
Program Interface (the interface between the Application layer and the DataAccess layer). The
criteria used in this decision included: the breadth of recognition and acceptance of the standard,
the stability of the standard, and the availability (and cost) of suitable COTS products which
implemented the standard. The COTS product was a key element in the decision because it would
form the heart of the DataAccess Layer. Essentially this layer provides the connection between
the application and the data stores. For the prototype, the data stores are the legacy NWSRFS
custom flat file system. However, the prototype also needed to demonstrate the feasibility of
using the data access layer to isolate the application from the data store and allow the form of the
data stores to evolve without requiring change to the applications. In accordance with the design
constraints, the team looked for COTS packages that supported an object oriented API while
interfacing with a flat file data structure.

After a great deal of research and discussion, the ODMG2 standard, defined and maintained by
the Object Data Management Group (http://www.odmg.org) was selected as the most suitable
interface standard for the API at that point in time (Summer, 1999). Accompanying this decision
was the decision to use the Visual Business Sight Framework (VBSF) from ObjectMatter, Inc. as
a key component of the Data Access Layer. (Complete information about the tool is available
from http://www.objectmatter.com .)

Two additional design constraints arose from the VBSF selection. First, VBSF required the use of
the Java programming language. Second, VBSF assumed that the data was stored in a relational
data base and accessible via the Java Data Base Connectivity (JDBC) protocol. While these
constraints introduced many additional complications for the design, the design team decided that

http://www.odmg.org
http://www.objectmatter.com

-5-

the constraints were acceptable because of the potential long term benefits. Java was viewed as
rapidly becoming a very widely accepted object oriented language and its use could provide
additional flexibility in the choice of languages for future application development. Similarly,
adoption of JDBC seemed like a reasonable choice because a long term goal was the transition of
most, if not all of the NWSRFS data from flat files to a relational storage system. However,
several of the complications are worth noting.

The introduction of Java into the middle layer of the prototype design meant that there would have
to be at least two interfaces between different languages in the design. Java provides a relatively
straightforward means of interfacing with c and c++. However, no good way was found to
interface directly between java and Fortran and so another layer of c++ code was introduced as a
bridge between java and Fortran.

The decision to use java in the prototype also required that most of the NWSRFS function
libraries had to be remade as shared (position independent) rather than archive (or absolute)
libraries. One of the limitations of the java language is that any external functions which it uses
must be contained in shared libraries. Although the creation of the shared versions of the libraries
was uneventful, thorough testing of all aspects of NWSRFS using shared libraries has not been
conducted.

The need to support JDBC calls to access the data required the development of a driver which
mapped those calls to the existing NWSRFS data access functions. As mentioned earlier, since
the legacy data access functions were implemented in Fortran, the team had to develop wrappers
which allowed the functions to be called from c++. In keeping with the minimalist approach to
development, JDBC driver only supported the set of JDBC function calls which were actually
used by VBSF to access the data used by the MAPX application. This same philosophy is
embodied in the data access wrappers, which provide support only for those calls actually used to
access data needed by the application. However, in general the designs were intended to be easily
extended to provide access to the remaining data in the NWSRFS data stores.

As the prototype team began to design and implement the DataAccessLayer interface between the
application layer and the VBSF component, two discoveries were made. First, there were
significant differences between the bindings, or specifications, of the ODMG2 standard in c++
and java. Secondly, the API that VBSF provided turned out to be “ODMG-based” rather than
“ODMG-compliant.” In the ODMG2 standard, the c++ specification was substantially more
mature and detailed than the java specification. This was probably a result of the fact that the java
language itself was rapidly evolving and maturing in the same time frame as the ODMG2
standard. Basically, the result of these two factors combined with the language difference between
the c++ of the application and the java of VBSF was that the interface became “much thicker”
(i.e., more complex) and the prototype team had to develop the code to implement that interface.
Furthermore, while the resulting interface would still be recognizable to anyone familiar with the
ODMG2 standard, an independent application which was strictly compliant with the ODMG2
standard might require some adaptation to use the DataAccessLayer interface.

-6-

A graphic depiction of the thicker interface can be seen in the prototype diagram (Figure 1). The
DataAccess API consists of all the objects between the two horizontal lines (dotted) labeled
ODMG2. The VBSF interface is implemented in java in the Database object class. This very
complex class includes a number of methods for creating, retrieving, updating deleting and
otherwise manipulating objects and the underlying data of which the objects are composed. In
order to make this interface callable from c++, the prototype implemented a corresponding object
class in c++ named DataConnection which supported only the subset of methods which were
actually needed to complete the MAPX application. Another class named JavaDataAPI was
implemented in java to contain the java versions of the DataConnection methods and make the
calls to the methods provided by the Database class.

As mentioned earlier, one of the more challenging design constraints was for the application to
access data in terms of data objects rather than data elements. One of the consequences of the
design to interface the object-oriented MAPX application, written in c++, with the object-oriented
VBSF, written in java, is that each object which is passed across the language boundary is
duplicated in the other language’s memory space. The design components responsible for
performing this duplication are the ObjectBuilders. The design includes a generic ObjectBuilder
object and a specific ObjectBuilder for each of the main object classes which are passed across the
DataAccess Interface. In the execution of the prototype, all of the data used by MAPX is initially
retrieved from one of the NWSRFS data stores. Therefore, each data object is initially built in
java by VBSF. When the data object passes across the language boundary to the DataConnection
object, it invokes methods within the generic ObjectBuilder object and the specific object builders
to create a duplicate data object in the c++ memory space. There are slight differences in the
definitions of the data object attributes, due to differences within the languages themselves.

The development team believes that there may be significant room for improvement within the
object building design. Currently, the objects are built according to “hard-coded” definitions of
the class attributes and types. The development team identified the modification of the design to
use a metadata definition that is available at execution as a logical enhancement to the design.
VBSF uses the class definitions contained in the schema file to generate objects and it should be
possible for the c++ builder objects to access this information. At the same time, it should be
possible to streamline the code to take advantage of many similarities in the functions being
performed.

Based on the testing that was done during development, the design of this interface seems to have
a substantial impact on the overall performance of the prototype. During the retrieval of large
objects such as a gridded precip file (with over 4,000 points), a significant amount of time is spent
copying each grid point value from the java object to the c++ object. This issue should be closely
reviewed for ways to improve the design to a point where it’s performance would be operationally
acceptable.

An early design decision led to a different path to handle the parameter data held in the Parameter
Common Block (PCB). This data may be more widely known as the Hydrologic Control

-7-

Language (HCL) input. Since the parameter data used by MAPX is made available via a Fortran
Common Block (in memory) rather than contained in a file, the design was simplified to allow the
data access path to this data to bypass the VBSF middleware. Instead, the PCBConnection object
directly invokes the PCBWrapper methods. These methods in turn wrap the individual Fortran
data access functions used to read the HCL data. Since both PCBConnection and PCBWrapper
are written in c++, the implementation is simplified, with no language translation needed.
Modifying the design and implementation to allow this data to be accessed through the VBSF
middleware should be straightforward, if that is desirable in the future. For example, if this data
is to be stored in a data base.

The JDBC_IHFS_Driver is a java class library which emulates the JDBC compliant interface to a
relational data base management system with which VBSF is designed to interface. Essentially,
this means that the driver, receives a database command and acts upon it to perform the requested
service or return the appropriate result set. In reality, the driver only responds to the subset of
JDBC functions which VBSF uses to access the data needed for the MAPX application.
However, since the functions are general purpose in nature, only a limited amount of enhancement
should be needed to support the data requirements for all of the NWSRFS pre-processors. The
design of the driver modules was based on the SimpleText model (Patel and Moss, 1997).

The JDBC_IHFS_Driver (in conjunction with the lower level components that it uses to
communicate with the legacy data) provides a great deal of flexibility which could be useful in
any future transitions or evolutions of the legacy data stores to a standard RDBMS. JDBC is a
widely accepted standard interface between java applications and an RDBMS. Although the
interface level is relatively low, we anticipate the availability of products which would map or
translate between JDBC and a higher level standard such as XML.

The MiddleMan component actually spans the lower level boundary between c++ and java.
While the module consists of both a java piece and a c++ piece, the java piece is strictly a calling
point for the c++ piece which provides all the functionality. This component essentially does the
translation between the data values in the columns of the emulated relational tables and the data
tuples handled by the I/O wrappers.

The I/O wrappers are c++ functions which allow c++ routines to use the Fortran data access
routines. The wrappers define data tuples which allow the data to handled in a standardized
format by other c++ routines. They also provide a bridge between the very loose data type
checking in Fortran and the strongly typed c++.

-8-

Figure 1.

-9-

IV. Observations from the Development Process

The issue of what standard should be used for the DataAccess API should probably be re-
examined. At the time of the original decision there were many arguments in favor of the
emerging XML standard, but it was not judged to be as mature or as widely accepted as ODMG2.
While the ODMG standard is still widely accepted and has been refined in ODMG3, XML seems
to be attracting more support and attention from developers and software vendors. Another point
to consider is that as we worked with the ODMG2 standard, we identified some significant
differences between the c++ and java bindings of the standard, this point may have been
addressed in the ODMG3 standard, but should be considered before a decision is made to do
further work using this standard.

Another lesson which seems to be relearned with every prototype development project is how
easy it is to underestimate the effort required to do something which hasn’t been done before.
Two prime examples of this were the development of the c++ Data Access API and the JDBC
IHFS Driver.

The development team expended considerable effort dealing with and overcoming the problems
caused by working with the same objects in multiple programming languages. A particular
problem is the differences in the data types supported or used by each language. This can be a
problem even in cases where the differences seem minor or non-existent. For example, all three
languages have the concept of an integer, but the definitions and properties of even integers are
inconveniently different. Where it wasn’t sufficient to use the lowest common denominator of the
data types, the development team created a substitute in the necessary language. For example, a
c++ implementation of a Number class which is the parent of all numeric types.

V. Observations about the Tools Used

A. ObjectTeam CASE tool

The ObjectTeam tool was very useful in the design phase of the prototype project. The UML
diagrams were very helpful in conveying and maintaining the definition of objects and their
relationships. The tool does basic error checking and balancing to ensure the existence of all
methods and attributes that are referenced. The tool provides a project management hierarchy and
version control scheme. This may be customizable, however, the prototype team simply adapted
our approach to work within the standard tool definitions. The team also used the tool to create
the initial source code for most of the objects which were developed and was generally pleased
with the results and the resultant productivity gains over manually generating the initial code
separately for each data class (module). This was especially true for the c++ code, where the .hxx
files were often usable with minimal manual changes and captured many of the dependencies . In

-10-

general for the .cxx and the .java files, the tool generated placeholders for the code to implement
the methods defined for the class. This was also convenient and provided an easily identifiable
indicator of methods which remained to be coded. On the negative side, for the “processing”
classes, the tool often generate seemingly extraneous code and methods to accommodate the
relationships between the processing classes. This may have been an issue that could have been
solved through customization for our specific needs.

One goal for the CASE tool was to use it to maintain the design as the design and code evolved
during development. The team found that it was possible, with sufficient care, to use the tool to
analyze the manually updated code (that is, the source files which contained code added by the
developers) and produce updated design diagrams. However, this process required that any
manually added code had to be within delimited areas and the resultant diagrams had to be
reviewed for accuracy. In addition, even if the diagrams accurately reflected the design of the
latest code, the tool was not able to reliably regenerate the same source files from the diagrams.
(Note that the tool’s documentation specifically warned that this was not possible.) For these
reasons, the tool did not really produce much benefit with respect to easily ensuring the
synchronization of the code and the as-built designs.

B. VBSF

The VBSF tool consists of two parts: an off-line, mapping tool, which is used to define the
relationships and mappings of the objects to the relational tables in which the data is stored; and a
real-time java class library which provides the functions which actually provide the bridge
between objects and relational tables during execution.

The VBSF tool seemed to do a good job at mapping objects to relational tables. There are a
number of subtleties involved in mapping the relationships and even after some extensive
experimentation, the prototype development team is not convinced that they have achieved the
optimum mapping. The software support via email for this product is very responsive and during
the prototype project, several upgrades to the product were announced. Unfortunately, the
prototype was unable to take advantage of these because the software required a later version of
java which was not supported by the target platform operating system (HPUX 10.2). In several
cases, the prototype developers had to design and implement workarounds for deficiencies which
were addressed in later VBSF versions. This tool should definitely be considered if there are
future needs to interface java code with data stored in relational tables

VI. Conclusions

The IHFS Data Access Prototype project has demonstrated that the Logical Data Model is a valid
portrayal the hydrologic data domain and therefore, should be useful as a guideline for evolving
the current physical implementation of the IHFS database. The prototype also has shown that it is
possible to hide the proprietary nature of the legacy NWSRFS data file structure beneath a
standard data interface. These facts may allow a smoother transition and evolution of the

-11-

NWSRFS in the future. The project has allowed the team and therefore the Hydrology Lab to
gain experience with the benefits and weaknesses of software development using CASE tools and
with an object-oriented approach. The performance of the prototype calls into question the
feasibility of implementing object-oriented interfaces in multiple languages at least using the
current prototype design.

VII. References

Bonnin, G., and D. Urban, “Development Of A Data Architecture For The NWS Hydrologic Services Program,” 16th

Conference on Interactive Information and Processing Systems for Meteorology, Oceanography, and Hydrology,
2000.

Bonnin, G., J. Gofus, Y. Qu, and D. Urban, “Prototyping the Data Access Layer of the Integrated Hydrologic Forecast
System,” 4th International Conference on Hydroinformatics, July 2000.

Cattell, R.G.G., and D. Barry, editors, The Object Database Standard: ODMG 2.0, Morgan Kaufmann Publishers,
1997.

Patel, P. and K. Moss, Java Database Programming with JDBC, 2nd. Edition, Coriolis Group Books, 1997.

